Category Archives: Statistics

Unbiased Estimator of Sample Variance – Vol. 2

Lately I received some criticism saying that my proof (link to proof) on the unbiasedness of the estimator for the sample variance strikes through its unnecessary length. Well, as I am an economist and love proofs which read like a book, I never really saw the benefit of bowling down a proof to a couple of lines. Actually, I hate it if I have to brew over a proof for an hour before I clearly understand what’s going on. However, in order to satisfy the need for mathematical beauty, I looked around and found the following proof which is way shorter than my original version.

Continue reading Unbiased Estimator of Sample Variance – Vol. 2

Advertisements

The Gauss Markov Theorem

When studying the classical linear regression model, one necessarily comes across the Gauss-Markov Theorem. The Gauss-Markov Theorem is a central theorem for linear regression models. It states different conditions that, when met, ensure that your estimator has the lowest variance among all unbiased estimators. More formally, Continue reading The Gauss Markov Theorem

What is an indirect proof?

In economics, especially in theoretical economics, it is often necessary to formally prove your statements. Meaning to show your statements are correct in a logical way. One possible way of showing that your statements are correct is by providing an indirect proof. The following couple of lines try to explain the concept of indirect proof in a simple way.

Continue reading What is an indirect proof?

Relationship between Coefficient of Determination & Squared Pearson Correlation Coefficient

The usual way of interpreting the coefficient of determination R^{2} is to see it as the percentage of the variation of the dependent variable y (Var(y)) can be explained by our model. The exact interpretation and derivation of the coefficient of determination R^{2} can be found here.

Another way of interpreting the coefficient of determination R^{2} is to look at it as the Squared Pearson Correlation Coefficient between the observed values y_{i} and the fitted values  Continue reading Relationship between Coefficient of Determination & Squared Pearson Correlation Coefficient

The Coefficient Of Determination or R2

The coefficient of determination R^{2} shows how much of the variation of the dependent variable y (Var(y)) can be explained by our model. Another way of interpreting the coefficient of determination R^{2}, which will not be discussed in this post, is to look at it as the squared Pearson correlation coefficient between the observed values y_{i} and the fitted values \hat{y}_{i}. Why this is the case exactly can be found in another post.

Continue reading The Coefficient Of Determination or R2

Balance Statistic

The following article tries to explain the Balance Statistic sometimes referred to as Saldo or Saldo Statistic. It is used as a quantification method for qualitative survey question. The benefit of applying the Balance Statistic arises when the survey is repeated over time as it tracks changes in respondents answers in a comprehensible way. The Balance Statistic is common in Business Tendency Surveys.

Continue reading Balance Statistic